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Abstract Planted three-dimensional (3D) trees,
which are defined as a 3D version of planted trees, are
enumerated by means of Fujita’s proligand method for-
mulated in Parts 1–3 of this series [Fujita in Theor Chem
Acc 113:73–79, 80–86, 2005; Fujita in Theor Chem Acc
115:37–53, 2006]. By starting from the concepts of proli-
gand and promolecule introduced previously [Fujita in
Tetrahedron 47:31–46, 1991], a planted promolecule is
defined as a 3D object in which the substitution posi-
tions of a given 3D skeleton are occupied by a root
and proligands. Then, such planted promolecules are
introduced as models of planted 3D-trees. Because each
of the proligands in a given planted promolecule is re-
garded as another intermediate planted promolecule in
a nested fashion, the given planted promolecule is recur-
sively constructed by a set of such intermediates planted
promolecules. The recursive nature of such intermediate
planted promolecules is used to derive generating func-
tions for enumerating planted promolecules or planted
3D-trees. The generating functions are based on cycle
indices with chirality fittingness (CI-CFs), which are
composed of three kinds of sphericity indices (SIs), i.e.,
ad for homospheric cycles, cd for enantiospheric cycles,
and bd for hemispheric cycles. For the purpose of evalu-
ating cd recursively, the concept of diploid is proposed,
where the nested nature of cd is demonstrated clearly.
The SIs are applied to derive functional equations for
recursive calculations, i.e., a(x), c(x2), and b(x). Thereby,
planted 3D-trees or equivalently monosubstituted alk-

S. Fujita (B)
Department of Chemistry and Materials Technology,
Kyoto Institute of Technology,
Matsugasaki, Sakyoku,
Kyoto 606-8585, Japan
e-mail: fajitas@chem.kit.ac.jp

anes as stereoisomers are enumerated recursively by
counting planted promolecules. The resulting values are
collected up to 20 carbon content in a tabular form.
Now, the enumeration problem initiated by mathemati-
cian Cayley [Philos Mag 47(4):444–446, 1874] has been
solved in such a systematic and integrated manner as sat-
isfying both mathematical and chemical requirements.

Keywords Planted 3D-tree · Monosubstituted
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1 Introduction

Although Pólya’s theorem [1,2] has been widely applied
to chemistry [3–8], its scope and limitations in chemi-
cal applications have not been mentioned until recently.
This is because conventional ways for enumerating
isomers by Pólya’s theorem have implicitly adopted a
condition that substituents for a given skeleton are lim-
ited to atoms (or graphs) even whether the skeleton is
regarded as being achiral or chiral.

A typical example for implying the scope and limi-
tations of Pólya’s theorem [1,2] is an enumeration of
aliphatic alcohols (monosubstituted alkanes more gen-
erally or planted trees mathematically), which has been a
classical problem initiated by a mathematician
Cayley [9,10]. To do this task, Pólya has used the sym-
metric group of degree 3 (S[3]) for topological isomers
(i.e., isomers as graphs) and the alternating group of
degree 3 (A[3]) for spatial isomers (i.e., isomers as 3D
structures). The Pólya’s treatment has been implicitly
based on the condition that substituents for a given
skeleton are limited to atoms (or graphs), because the
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terms 2S[3] – A[3] and S[3] – A[3] were used to count
topologically different isomers having asymmetric car-
bon centers (cf. Sect. 42 of [1,2]).

So long as the substituents have been considered to
be atoms, graphs, or at most achiral ligands, it can be
said that Pólya’s theorem and its chemical applications
have disregarded the inner structure of the substituents.
Under this condition, fundamental problems on stereo-
chemistry such as meso-compounds and pseudoasym-
metry had not emerged as obvious difficulties. Even
when Pólya’s theorem took account of asymmetric car-
bon centers (cf. Sect. 42 of [1,2]), it overlooked the
problems on meso-compounds and pseudoasymmetry.
It should be noted that the stereochemical problems
have once been major difficulties at the beginning of
stereochemistry [11,12] and solved in the last quarter of
the nineteenth century in a descriptive or non-
mathematical fashion [11–14]. Although Robinson et al.
[15] has accomplished the enumeration of monosubsti-
tuted alkanes by modifying Pólya’s cycle indices (CIs),
it is still desirable to develop a more systematic method
for comprehending the problems on meso-compounds
and pseudoasymmetry.

To characterize stereoisomers as three-dimensional
(3D) objects having inner structure, we have developed
the USCI (unit-subduced-cycle-index) approach origi-
nally by means of algebraic derivation [16–19] and then
we have alternatively formulated the USCI approach
in a diagrammatical fashion [20–22]. The Fujita’s USCI
approach has emphasized the concept of sphericities of
orbits governed by coset representations. In addition,
the concepts of proligands and promolecules have been
proposed to characterize the chirality/achirality of lig-
ands as substituents in a more abstract fashion [23–25].

From a viewpoint brought about by Fujita’s USCI
approach, it has been found that Pólya’s theorem is
deficient in the concepts described above. This find-
ing has indicated that an alternative method compatible
with Fujita’s USCI approach should be formulated to
characterize and enumerate stereoisomers as three-
dimensional objects having inner structure. For this
purpose, we have proposed the proligand method as
reported recently in Parts 1–3 of this series [26–28],
where the original sphericity concept (i.e., sphericity of
orbits) has been transformed into a new concept spher-
icities of cycles [26–28] through an intermediate concept
“sphericities of orbits for cyclic subgroups” [29–32].

In the preset paper, Fujita’s proligand method will
be applied to the enumeration of monosubstituted alk-
anes as 3D structures, where planted 3D-trees will be
formulated by using the concepts of proligands and pro-
molecules.

2 Planted three-dimensional trees

Cayley introduced the concept of a tree [10] and
enumerated all rooted trees in connection with isomers
of monosubstituted alkanes [9,10], as reviewed in a book
[33]. Pólya developed a more systematic approach to the
enumeration of trees and rooted trees, after he estab-
lished the main theorem (“Hauptsatz”) bearing his name
(cf. Sect. 16 of [1,2]).

In the present paper, we use the terms graph, tree,
root, rooted tree, vertex, edge, and degree in accord with
the common usage adopted in textbooks [34,35]. The
term planted tree is used in the meaning of Pólya (cf.
Sect. 31 of [1,2]) to designate a kind of rooted tree in
which the root is a vertex which is an endpoint playing
a special role. The vertices of a planted tree which are
different from the root are called nodes. Among such
nodes, the node directly connected to the root through
a single edge (called a stem) is referred to as a prin-
cipal node. Chemically speaking, the term stem corre-
sponds to the valence bond of an alkyl ligand and the
term root corresponds to the terminal of the valence
bond. Because the relationship between the mathemat-
ical term “planted trees” and the chemical term “mono-
substituted alkanes” (or “aliphatic alcohols” or “alkyl
ligands”) can be clearly specified in this manner, we will
put a special focus on the enumeration of planted trees.

Because planted trees have been defined as a kind of
graphs [1,2], they are insufficient to treat monosubsti-
tuted alkanes (aliphatic alcohols, alkyl ligands, or alkyl
radicals equivalently) as stereoisomers. Obviously, the
concept of chirality/achirality cannot be introduced into
the concept of graphs so long as we remain the conven-
tional methodology. It follows that we shall introduce
the concepts of rooted and planted three-dimensional
(3D) trees as advanced concepts for treating stereoi-
somers properly.

1. A three-dimensional (3D) tree is defined as a 3D
object which is composed of Nv vertices and Ne
edges, where each edge is bounded by two vertices;
the relationship Nv = Ne + 1 is satisfied; and each
vertex and its incident edges construct a 3D arrange-
ment exhibiting chirality or achirality. The number of
incident edges on each vertex is referred to as degree.

2. A rooted three-dimensional (3D) tree is defined as
a 3D-tree in which one vertex is discriminated as a
root from the other vertices.

3. A planted three-dimensional (3D) tree is defined as a
kind of rooted 3D-tree in which there emerge only
one special vertex named a root which is an endpoint,
only one special edge named a stem which is bound
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by the root, and only one special vertex named a
principal node which is linked by the stem.

Sometimes, 3D-trees are referred to as free 3D-trees,
when they are discriminated from rooted or planted 3D-
trees.

As found easily, the definitions described above come
from those employed for trees, rooted trees, and planted
trees as graphs. However, the main objective is to take
account of the 3D structure exhibiting chirality or achi-
rality. When such 3D structures are considered, the free
rotation around each edge causes multiple conforma-
tional changes. As a result, it is not an easy task to test
the congruence between two 3D trees, two rooted 3D-
trees, or two planted 3D-trees.

To formulate the criteria for judging such congruence,
let us consider achiral stereoisomers of 4,6-dimethyl-
nonan-5-ol having a molecular formula C11H23OH,
which are designated by the 3D structural formulas (1
and 2) shown in Fig. 1. Their 3D properties are expressed
by wedges and hashed bonds attached to the carbon
chain. Note that each carbon atom is designated by a
joint of two or more bonds, each hydrogen atom is des-
ignated by an open circle, and a hydroxyl group is des-
ignated by a solid circle. Strictly speaking, the hydroxy

Fig. 1 Planted three-dimensional (3D) trees (1 and 2). Each joint
of two or more edges represents a node. Each open circle repre-
sents an end vertex. The vertex P is referred to as a principal node.
The vertex R designated by a solid circle is called root, which is an
exceptional vertex and usually regarded as being not contained in
the rooted 3D tree. The edge between the principal node and the
root is called stem

group (OH) contains two atoms, but it is regarded as
one vertex in order to formulate planted 3D-trees.

The two structural formulas (1 and 2) can be regarded
as planted 3D-trees, when the open circles and the joints
are regarded as nodes as well as the solid circle is
regarded as a root. According to the definition of planted
trees, the vertex P is referred to as a principal node in
1 or 2 and the vertex R designated by a solid circle is
the root of 1 or 2 as a planted 3D-tree. In contrast to
the corresponding graphs (i.e., planted trees without 3D
structural information), the planted 3D-trees (1 and 2)
maintain the 3D properties expressed by wedges and
hashed edges.

3 Planted promolecules

3.1 Planted promolecules as models of planted
3D-trees

Because the free rotation of each bond is permitted
in agreement with chemical compounds, there emerge
multiple conformational changes for each compound.
On the same line, the corresponding planted 3D-tree
contains one or more conformers, which exhibit differ-
ent spatial arrangements due to rotations around edges
(bonds). To enumerate planted 3D-trees, such conform-
ers should be recognized to be congruent with each other
so that they should be regarded as one “stereoisomer”.

To assure this type of congruence, the concepts of
proligands and promolecules [16,23] are applied to this
case. A proligand is defined as a hypothetical ligand with
chirality or achirality. Any ligand can be regarded as a
chiral proligand or an achiral one in an abstract fashion
without considering full information on spatial arrange-
ments (i.e., conformation as stereochemical properties).
A skeleton of G-symmetry is defined as a 3D object hav-
ing one ore more substitution positions. A promolecule
is defined as a 3D object which is generated by placing a
set of proligands on the positions of the skeleton. Among
the substitution positions, a set of equivalent positions
are numbered sequentially to give an orbit governed
by a right or left coset representation (RCR or LCR),
i.e., (H\)G or G(/H). Note that either right or left coset
representation may be used and gives equivalent results.

To apply these concepts to a planted 3D-tree, we
should define a planted promolecule by a “planting” pro-
cedure as follows:

1. We first select a skeleton and substitution positions.
Let P be the principal node of a given planted 3D-
tree. Suppose that each node linked to P is regarded
as a substitution position. Then such substitution
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positions, the root (R), and the principal node (P)
construct a skeleton of G-symmetry, in which the
relevant edges (and the stem) are involved.

2. Next, we derive proligands by starting from the plan-
ted 3D-tree. When the P, the R, and the stem are
deleted from the planted 3D-tree, the remaining part
is partitioned into several segments, each of which is
linked to the node chosen as each of the substitu-
tion positions in the selection of the skeleton. These
segments can be regarded as proligands.

3. After the specification of the skeleton and the proli-
gands, they are considered to construct a kind of pro-
molecule having a root. To put emphasis on this kind
of promolecule, a planted promolecule is defined as a
promolecule in which one position is substituted by
a special proligand called a root.

By following the planting procedure, for example,
the planted 3D-tree (1) gives a planted promolecule
(3) shown in Fig. 2, where a skeleton of C3v-symme-
try is selected by the first step of the above procedure.
The segments, i.e., an open circle (H), an R-CH(CH3)
(CH2CH2CH3) segment (p), and an S-CH(CH3)
(CH2CH2CH3) segment (p), are regarded as proligands,
where H is an achiral proligand, while p and p are chi-
ral proligands of an enantiomeric pair. Similarly, the
planted 3D-tree (2) gives a planted promolecule (4 or
equivalently 4′) shown in Fig. 2.

Each segment recognized as a proligand (e.g., p and
p) can be further treated in terms of a planted 3D-tree,
which is nested in the parent planted 3D-tree described
above. This recognition of recursive nature is tentatively
called “grafting” in order to be differentiated from the
term “pruning”. Thus, the grafting procedure is summa-
rized for the sake of further discussions:

1. Suppose that the segment is modified as follows: the
node corresponding to the principal node P of the
parent planted 3D-tree is regarded as a new root, an
edge incident to P is considered to be a new stem, and
the alternative terminal node of the stem is consid-

Fig. 2 Planted promolecule as models of the planted three-
dimensional trees (3 and 4). The symbols p and p represent a pair
of enantiomeric proligands. The symbol H represents an achiral
proligand. Note that such a hydrogen atom (H) is also regarded
as a proligand

ered as a new principal node. Thereby, the modified
segment is regarded as a child planted 3D-tree.

2. The child planted 3D-tree is, then, converted into a
planted promolecule by the planting procedure
described above.

Following the grafting procedure, for example, the
right-hand segment denoted by p, i.e., R-CH(CH3)
(CH2CH2CH3), in the parent planted 3D-tree (1) is
converted into a child planted 3D-tree (5), as shown in
Fig. 3. The resulting planted 3D-tree (5) is regarded as a
planted promolecule (6), where achiral proligands des-
ignated by H, X, and Y correspond to a hydrogen atom,
a methyl ligand, and an n-propyl ligand, respectively.

By applying the grafting procedure further, the proli-
gand X (i.e., the methyl ligand) in 6 is regarded as a
grandchild planted 3D-tree, which is ascribed to a sub-
sidiary planted promolecule (7). On the other hand, the
proligand Y (i.e., the n-propyl ligand) in 6 is regarded as
another grandchild planted 3D-tree, which is ascribed
to a planted promolecule (8). The symbol Z represents
an achiral proligand corresponding to an ethyl ligand,
which is further regarded as a planted 3D-tree.

The recursive application of the grafting procedure
allows us to recognize that the proligand Z (i.e., the
ethyl ligand) in 8 can be regarded as a further subsidiary
planted 3D-tree. This is ascribed to a planted promol-
ecule (9), which is of the same type as 8, where the
proligand Z is replaced by X corresponding to a methyl
ligand. As a result, we are able to apply the grafting
procedure recursively to a given planted 3D-tree until

Fig. 3 Planted 3D-tree derived from the proligand (p) and the
corresponding planted promolecule

Fig. 4 Planted promolecules corresponding to planted 3D-trees
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we reach its endpoints through intermediate planted 3D-
trees. It should be emphasized that each intermediate
planted 3D-tree can be regarded as a planted promole-
cule.

3.2 Symmetries of planted promolecules

A given planted 3D-tree and any intermediate planted
3D-trees generated recursively can be ascribed to plan-
ted promolecules of the same skeleton, if all of the
nodes except endpoints have the same degree (valen-
cy). For example, the planted promolecules relevant to
the planted 3D-tree (1 or 2), i.e., 3, 4, 6, 7, and 8, are
based on the same skeleton of C3v-symmetry, although
they are depicted in various ways.

Suppose that an orbit (equivalence class) of substitu-
tion positions in a skeleton of G-symmetry is governed
by the RCR (H\)G. A planted promolecule generated
by placing a set of proligands on the substitution posi-
tions belongs to a subgroup K of G. The operations of
G transform the planted K-promolecule into permuted
ones which are congruent with the original planted K-
promolecule. Under usual conditions, the skeleton cor-
responding to a planted 3D-tree belongs to Ckv-point
group, where the line from the root R to the principal
node P through the stem is a k-fold axis of rotation.
Moreover, the set of k positions of the skeleton is gov-
erned by the RCR (Cs\)Ckv.

For example, the skeleton (10 = 10a) corresponding
to the planted promolecules (3, 4, 6, 7, and 8) belongs
to C3v, as shown in Fig. 5. The three positions other
than the root construct an orbit governed by the RCR
(Cs\)C3v, whose concrete form is shown as a product of
cycles in Table 1. The numbering used in the the RCR
(Cs\)C3v corresponds to the numbering shown in the
skeleton (10). It should be noted that the product of
cycles corresponding to each improper rotation (σv(1),
σv(2), or σv(3)) is attached by an overbar, which shows
the inverse of chirality.

Table 1 Right coset representation (RCR), cycle indices with chi-
rality fittingness (CI-CF) and CI for a planted C3v-promolecule

Symmetry RCR Product Product of
operation (Cs\)C3v of SI variables

I (1)(2)(3) b3
1 s3

1
C3 (1 2 3) b3 s3
C2

3 (1 3 2) b3 s3

σv(1) (1)(2 3) a1c2 s1s2

σv(2) (1 3)(2) a1c2 s1s2

σv(3) (1 2)(3) a1c2 s1s2

Fig. 5 Symmetry operations for a C3v-skeleton (10). The identity
operation (I) converts 10 into itself, where the resulting skeleton
is denoted as 10a

It is an easy task to obtain the product of cycles
diagrammatically by applying the symmetry operations
of C3v to the reference skeleton (10a). Thereby, the
three positions of the skeleton (10a) are permuted into
congruent skeletons (10a–10f) in accord with the RCR
(Cs\)C3v (Fig. 5).

According to the concept of sphericities of cycles [26–
28], d-cycles are classified into three types:

1. a homospheric cycle (ad) if the corresponding sym-
metry operation is improper and d is odd,

2. an enantiospheric cycle (cd) if the corresponding sym-
metry operation is improper and d is even, and

3. a hemispheric cycle (bd) if the corresponding symme-
try operation is proper and even whether d is odd or
even.

Each of them is characterized by a sphericity index
(SI), i.e., ad, cd, or bd. Then, each symmetry operation
is characterized by a product of sphericity indices, as
shown in Table 1.

The planted promolecule (3) is considered to be gen-
erated from the skeleton (10) by placing an achiral proli-
gand H on position 1, a chiral proligand p on position 2,
and a chiral proligand p on position 3. By the action of
each improper operation (reflection), the achiral proli-
gand H is converted into itself (i.e., H = H), while the chi-
ral proligand p (or p) is converted into its enantiomeric
proligand p (or p = p). The action of every symmetry
operation of C3v generates equivalent planted promol-
ecules (3a–3f), as shown in Fig. 6.

Because 3a and 3d are identical except their num-
bering, the promolecule 3 is fixed by I and σv(1). This
means that 3 belongs to Cs-symmetry. The Cs-symmetry
of 3 is interpreted by the concept of chirality fittingness,
which has been originally formulated to characterize
the accommodation capability of an orbit before and
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after subduction (i.e., desymmetrization) [16,36]. Thus,
the orbit governed by the RCR (Cs\)C3v is a three-
membered homospheric orbit, which is capable of
accommodating three achiral ligands (or proligands) of
the same kind. On the other hand, the (Cs\)C3v-orbit is
subduced into the subgroup Cs according to the follow-
ing equation:

(Cs\)C3v ↓ Cs = (Cs\)Cs + (C1\)Cs. (1)

The resulting (Cs\)Cs-orbit is a one-membered homo-
spheric orbit so as to accommodate an achiral ligand or
proligand. The other (C1\)Cs-orbit is a two-membered
enantiospheric orbit so as to accommodate two achiral
ligands (or proligand) or a pair of enantiomeric ligands
(or proligands). The achiral proligand H of 3a is in agree-
ment with a1 and the pair of chiral proligands p and p is
in agreement with c2 in the original meaning described
in [16,36].

3.3 Enumeration of planted promolecules

Recently, the concept of chirality fittingness has been
modified to characterize the transitivity of a cycle [26–
28]:

1. A homospheric d-cycle (characterized by the SI ad)
interchanges d achiral proligands in a transitive fash-
ion.

2. An enantiospheric d-cycle (characterized by the SI
cd) interchanges d/2 of chiral proligands of the same
kind and d/2 of the corresponding enantiomeric chi-
ral proligands of the same kind in a transitive fash-
ion. Such an enantiospheric d-cycle is also capable
of exchanging d achiral proligands of the same kind,
where the half and the other half are exchanged by
the action of the corresponding improper rotation.

3. A hemispheric d-cycle (characterized by the SI bd)
interchanges d proligands of the same kind in a tran-
sitive fashion, whether the proligands are achiral or
chiral.

In terms of the chirality fittingness of a cycle, we have
developed the proligand method, as reported in the pre-
vious papers of this series [26–28]. Thus, Theorem 2 of
Part 3 of this series [28] has been introduced to accom-
plish the enumeration of ligands under the action of a
point group. This theorem can be applied to the enumer-
ation of planted promolecules without any modification.
Hence, by using the product of SIs collected in Table 1,
the cycle index with chirality fittingness (CI-CF) for this
case is calculated as follows:

CI-CF(C3v, $d) = 1
6
(b3

1 + 2b3 + 3a1c2), (2)

Fig. 6 Planted Cs-promolecules equivalent under the operations
of C3v

which counts achiral planted promolecules and enantio-
meric pairs of chiral planted promolecules. Theorem 3
of [28] for the enumeration of ligands under the action
of the maximum chiral subgroup can be applied to this
case so as to derive the following CI-CF:

CI-CF(C3, bd) = 1
3
(b3

1 + 2b3), (3)

which counts achiral planted promolecules and chiral
planted promolecules, where two enantiomers of each
pair are counted separately. The first proposition of
Theorem 4 for the enumeration of achiral ligands [28]
can be applied to this case so as to derive the following
CI-CFA:

CI-CFA(C3v, $d) = 2CI-CF(C3v, $d) − CI-CF(C3, bd)

= 1
3

× (3a1c2) = a1c2, (4)

which counts achiral planted promolecules only. The sec-
ond proposition of Theorem 4 for the enumeration of
chiral ligands [28] can be applied to obtain the following
CI-CFC:

CI-CFC(C3v, $d) = CI-CF(C3, bd) − CI-CF(C3v, $d)

= 1
6
(b3

1 + 2b3 − 3a1c2), (5)

which counts chiral planted promolecules only.
Suppose that a set of proligands selected from the

following proligand warehouse:

X = {H, X, Y; p, p; q, q; r, r}, (6)

where the symbols H, X, and Y represent achiral proli-
gands, while the pairs, p / p, q / q, and r / r, denote enan-
tiomeric pairs of chiral proligands. Then, the following
ligand inventories are calculated:
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ad = Hd + Xd + Yd (7)

cd = Hd + Xd + Yd

+2pd/2pd/2 + 2qd/2qd/2 + 2rd/2rd/2 (8)

bd = Hd + Xd + Yd

+pd + pd + qd + qd + rd + rd. (9)

These ligand inventories are introduced to Eqs. 2–5 to
give generating functions for counting the respective
numbers of objects. The generating functions derived
from Eqs. 2–5 are essentially equivalent to those
described in Part 3 of this series [28], i.e., Eq. 40 of
Example 2, Eq. 45 of Example 3, Eq. 52 of Example 4,
and Eq. 53 of Example 4.

For further discussions, Fig. 7 collects planted pro-
molecules of various types. Note that an appropriate
representative is depicted for every type of planted pro-
molecules. For example, 11 (H3) is a representative of
achiral promolecules having H3, X3, Y3, and so on, even
when the warehouse (Eq. 6) is expanded to have other
achiral proligands.

It should be noted that a chiral planted promolecule is
characterized by a combined term to represent an enan-
tiomeric pair. For example, the enantiomeric pair for
17 is characterized by the term, 1

2 (Hp2 + Hp2). On the
other hand, the achiral planted promolecule 18 (or 19)
is represented by the term Hpp. If we place p = XYZ for
a R-proligand and p= XYZ for an S-proligand, the two

terms become equal, i.e., 1
2 (H(XYZ)2 + H(XYZ)

2
) =

H(XYZ)2 and H(XYZ)(XYZ) = H(XYZ)2, because
the achiralities of X, Y, and Z mean that X = X, Y = Y,
and Z = Z. The discrimination of these two cases is a
key to comprehend the pseudoasymmetry concerning
18 (or 19).

4 Recursive enumeration of planted 3D-trees

4.1 Principle of determining chirality/achirality

It is worthwhile here to mention how multiple confor-
mational changes are treated in the present formulation
of planted 3D-trees as planted promolecules.

Suppose that each of the two proligands (X) in the
planted promolecule (12) is replaced by an achiral ligand
CH2Y (e.g., Y = chlorine and H = hydrogen). Then, the
resulting planted promolecule has at least two extreme
modes of conformation (34 and 35), as shown in Fig. 8.
The conformer (34) as a fixed 3D object belongs to C1-
point group, while the conformer (35) as a fixed 3D ob-
ject belongs to Cs-point group. The former is chiral and
the latter is achiral, although they are interchangeable
by considering free rotations around an edge (bond).

Fig. 7 Various types of planted promolecules based on the C3v-
skeleton of a methyl type. The symbols H, X, and Y represent
achiral proligands, while the pairs, p / p, q / q, and r / r, denote enan-
tiomeric pairs of chiral proligands. The planted promolecules sur-
rounded by a box are achiral. The other planted promolecules are
chiral so that an appropriate enantiomer is depicted as a repre-
sentative for each enantiomeric pair

So long as we take account of such free rotations, the
chirality/achirality of every conformer (e.g., 34, 35, and
others) should be considered. This treatment, however,



360 Theor Chem Acc (2007) 117:353–370

Fig. 8 Fixed conformations (34 and 35) and the corresponding
planted promolecule (36)

would give no fruitful results in combinatorial enumer-
ation, because there are an infinite number of interme-
diate conformers.

In the present approach, on the other hand, the con-
formers (34 and 35) are replaced by a single planted
promolecule 36 (= 12). As a result, the infinite nature
of conformational changes is embedded into proligands
of finite nature, where the information on chirality/achi-
rality is preserved. Although this feature is obvious in
terms of the definition of a planted promolecule, it is
summarized as a theorem:

Theorem 1 (Principle of determining chirality/achiral-
ity) The chirality/achirality of a planted promolecule in
isolation is determined if the chirality/achirality of its skel-
eton and that of its proligands are determined.

This principle allows us to identify a planted 3D-tree
as a single 3D object without explicit consideration of
infinite conformational changes. The crux of this prin-
ciple is that the non-rigidity of a planted 3D-tree is
replaced by the rigidity of the corresponding planted
promolecule without losing generality so that the chi-
rality/achirality of the planted 3D-tree is determined by
examining the planted promolecule.

It should be noted that the planted promolecule
described in this principle is regarded as being in iso-
lation. Without being in isolation, achirality might be
restricted to exhibit chirality. For example, the two achi-
ral proligands X (i.e CH2Y ligand) exhibit chirality (i.e.,
local chirality) when restricted to the promolecule (36).
When each of the proligands X is regarded as a planted
promolecule, nevertheless, the planted promolecule (i.e.,
•–CH2Y) should be determined to be achiral in isola-
tion.

Chemically speaking, one of the most important
conclusions of this principle is that the identity of a com-
pound having several extreme conformers (in fact, infi-
nite intermediate conformers) should be confirmed in
the level of promolecules after an appropriate skeleton
is selected. Note that the selection of such a skeleton
depends upon the purpose of our discussions (e.g., on
atropisomers without free rotations).

4.2 Diploids for characterizing enantiosphericity

To develop a general method of enumeration, we shall
examine the chirality fittingness of an enantiospheric
cycle characterized by the SI (cd) in more detail. The
enantiospheric occupation mode of such an enantio-
spheric cycle has been obtained as generating functions
in Lemma 1 of [28], where the aim of the lemma has been
limited within the treatment of the relationship between
proligands as substituents in a promolecule. Hence, the
modes should be formulated so as to be capable of treat-
ing the relationship between promolecules, in particular,
the relationship between planted promolecules as mod-
els of planted 3D-trees.

In order to treat the relationship between proligands
as substituents in a promolecule, the enantiospheric
occupation modes of an enantiospheric orbit referred to
as “compensated chiral packing” have been introduced
[16,36]. They can be modified to explain the action of
an enantiospheric cycle as depicted schematically:

d/2
︷ ︸︸ ︷

p p · · · p
p p · · · p

and

d/2
︷ ︸︸ ︷

p p · · · p
p p · · · p

where every proper rotation acts distinctly on the upper
row and on the the lower row of each scheme, while
every improper rotation is concerned with the exchange
between the upper row and the lower row as well as the
chirality alternation of each proligand. Each mode of
packing is fixed by the action of the enantiospheric d-
cycle, because the proligand p (or p) is transformed into
p (or p) and at the same time the upper row containing
d/2 of p (or p) and the lower row containing d/2 of p
(or p) are exchanged. These two schemes represent the
occupation modes in diastereomeric promolecules. On
the other hand, the enantiospheric occupation mode for
an achiral proligand X is depicted as follows:

d/2
︷ ︸︸ ︷

X X · · · X
X X · · · X

To integrate the modes for chiral proligands and the
mode of an achiral proligand, we shall define a diploid
as a two-membered ordered set containing the enantio-
meric objects (enantiomeric proligands in this step of
discussion) of a given pair, i.e., {p, p} and {p, p}, where
every proper rotation transforms each of the diploids
into itself, while every improper rotation causes the
exchange of the two components of each diploid as
well as the change of the chiralities of the components.
The term (pp)1/2(=√

pp) is assigned to the two diploids.
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These diploids are presumed to be different from each
other. On the other hand, an achiral proligand (X) gen-
erates one diploid, i.e. {X, X}, because of X = X.

Because each proper rotation transforms p (or p) into
itself, each diploid {p, p} (or {p, p}) is transformed into
itself by a proper rotation. At the same time, the dip-
loid {p, p} (or {p, p}) is converted into itself even by
an improper rotation, because we can presume {p, p} =
{p, p} (or {p, p} = {p, p}) in terms of chirality alternation
after exchange. As a result, the schemes depicted above
for p and p are transformed into the following schemes:

d/2
︷ ︸︸ ︷

{p, p} {p, p} · · · {p, p}
{p, p} {p, p} · · · {p, p} and

d/2
︷ ︸︸ ︷

{p, p} {p, p} · · · {p, p}
{p, p} {p, p} · · · {p, p}

It should be noted that these schemes for the diploids
have the same appearance as the scheme for the diploid
of the achiral proligand (X):

d/2
︷ ︸︸ ︷

{X, X} {X, X} · · · {X, X}
{X, X} {X, X} · · · {X, X}

After the formulation of diploids (i.e., {p, p}, {p, p},
etc.), the evaluation of such a ligand inventory as cd
(Eq. 8) is accomplished by using rather artificial terms
such as (pp)1/2, (qq)1/2, and (rr)1/2 for chiral proligands
as well as by employing usual terms such as H, X, and
Y for achiral proligands. Note that the subscript d for cd
represents an even number so as to give d/2 as a positive
integer. Because the equivalence between p and p by the
action of improper rotations is concealed by the formu-
lation of diploids, we can use the maximum chiral point
group (e.g., C3 in the case of the C3v-point group at
issue) to test the congruence of diploids.

This formulation allows us to reread Lemma 1 of [28]
as aiming at the enumeration of such diploids, because
the original derivation of the lemma [28] turns out to be
essentially the same thing as the derivation described in
the preceding paragraphs. It follows that the following
CI-CFD is obtained:

CI-CFD(C3, cd) = 1
3
(c3

2 + 2c6). (10)

The concept of diploids is capable of describing a
pair of enantiomers for planted promolecules. Let Q
be a chiral planted promolecule and Q its enantiomeric

planted promolecule. Then, there emerge two diploids,
i.e., {Q, Q} and {Q, Q}, which are presumed to be differ-
ent from each other.

d/2
︷ ︸︸ ︷

{Q, Q} {Q, Q} · · · {Q, Q}
{Q, Q} {Q, Q} · · · {Q, Q} and

d/2
︷ ︸︸ ︷

{Q, Q} {Q, Q} · · · {Q, Q}
{Q, Q} {Q, Q} · · · {Q, Q}

Suppose that each proper rotation transforms Q (or Q)
into itself. Then each diploid {Q, Q} (or {Q, Q}) is trans-
formed into itself by a proper rotation. On the other
hand, suppose that each improper rotation causes the
exchange of the two components of a diploid as well as
the change of the chiralities of the components. Thereby,
the diploid {Q, Q} is converted into itself even by an

improper rotation, because we can presume {Q, Q} =
{Q, Q}.

On the other hand, an achiral planted promolecule A
generates one diploid, i.e. {A, A}, because of A = A. The
resulting diploid exhibits the following mode of packing:

d/2
︷ ︸︸ ︷

{A, A} {A, A} · · · {A, A}
{A, A} {A, A} · · · {A, A}

It follows that Lemma 1 of [28] is applicable to the
enumeration of diploids extended to characterize plan-
ted promolecules. This means that Eq. 10 is also effective
to the planted promolecules.

4.3 Generating functions for enumerating planted
3D-trees

Any planted 3D-tree (or any planted promolecule) can
be characterized by the number n of non-terminal nodes
so as to be represented by the term xn. For example, we
assign x11 to 1 (or 3) and 2 (or 4), x5 to 5 (or 6), x to 7,
x3 to 8 and x2 to 9.

According to this type of expressions, let a(x) be
a generating function for enumerating achiral planted
promolecules (cf. Eq. 4); c(x) a generating function for
enumerating diploids (ordered enantiomeric pairs, cf.
Eq. 10); and b(x) a generating function for enumer-
ating achiral planted promolecules and chiral planted
promolecules, where two enantiomers of each pair
counted separately (cf. 3). Thus, we place the following
generating functions:
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a(x) =
∞
∑

n=0

αnxn (11)

c(x) =
∞
∑

n=0

γnxn (12)

b(x) =
∞
∑

n=0

βnxn, (13)

where we put α0 = 1, γ0 = 1, β0 = 1 for the trivial cases;
and αn, γn, and βn represent the numbers of planted pro-
molecules at issue, which have the molecular formula xn.
Note that these equations can be evaluated by Eqs. 4, 10,
and 3, respectively.

Let B(x) be a generating function for enumerating
achiral plus chiral planted promolecules (cf. Eq. 2),
where each enantiomeric pair of chiral planted promole-
cules is counted just once. Let C(x) be a generating func-
tion for enumerating chiral planted promolecules (cf.
Eq. 5), where each enantiomeric pair of chiral planted
promolecules is counted just once. Then, we find the
following generating functions:

B(x) =
∞
∑

n=0

Bnxn (14)

C(x) =
∞
∑

n=0

Cnxn (15)

where we put B0 = 1 and C0 = 1 for the trivial cases and
Bn and Cn represent the numbers of planted promole-
cules at issue, which have the molecular formula xn.

4.4 Ligand inventories as generating functions

By using the grafting procedure, a planted 3D-tree hav-
ing n non-terminal nodes (chemically carbons) as a par-
ent is divided into three planted 3D-trees as children,
which have totally n − 1 nodes. Every child planted 3D-
trees are represented by the term xn recursively and
can be regarded as proligands (or planted promolecules
recursively), which are involved in the ligand inventories
shown in Eqs. 7–9.

Let us first consider Eq. 9, where the warehouse
(Eq. 6) grows in agreement with the grafting procedure.
This equation is recognized to be a generating func-
tion of counting achiral proligands plus individual chiral
proligands (not enantiomeric pairs), each of which is
now further regarded as a child planted promolecule in
the grafting procedure. Note that such an achiral proli-
gand as a child planted promolecule takes either one
of the types collected in Fig. 7. Moreover, the parent
planted promolecule takes also either one of the types
collected in Fig. 7. This situation can be treated in terms

of Theorem 3 of [28] for the enumeration of ligands
under the maximum chiral subgroup (C3) so that the
CI-CF shown in Eq. 3 and the generating functions shown
in Eq. 13 can be used recursively. Because three children
to which the generating function (Eq. 13) is assigned are
permuted in accord with the CI-CF (Eq. 3), Theorem 3
of of [28] shows that the series for enumerating achiral
proligands plus individual chiral proligands (not enan-
tiomeric pairs) is given by the following expression:

1
3

(

b(x)3 + 2b(x3)
)

, (16)

where the subscript d in Eq. 9 is treated as the power of
x, i.e., xd. Because Eq. 16 ignores the principal node of
the parent planted promolecule tentatively, the follow-
ing functional relation is obtained by multiplying by x
and adding 1 for the initial (trivial) planted promolecule:

b(x) = 1 + x
3

(

b(x)3 + 2b(x3)
)

. (17)

This type of equation was first noted by Pólya [1,2],
although the sphericity concept was not taken into con-
sideration.

Next, let us consider Eq. 8, where the warehouse
(Eq. 6) again grows in agreement with the grafting pro-
cedure. This equation is recognized to be a generating
function of counting diploids (achiral proligands plus or-
dered enantiomeric pairs), each of which is now further
regarded as a child planted promolecule. This situation
can be treated in terms of Lemma 1 of [28] for count-
ing enantiomeric occupation modes so that the CI-CFD
shown in Eq. 10 and the generating functions shown in
Eqs. 12 can be used recursively. Because three children
to which the generating function (Eq. 12) is assigned
are permuted according to the CI-CFD shown in Eq. 10,
Lemma 1 of of [28] shows that the series for enumerating
diploids is given by the following expression:

1
3

(

c(x2)3 + 2c(x6)
)

, (18)

which is derived from Eq. 8 by the subscript d is treated
as the power of x, i.e., xd.

Because Eq. 18 ignores the principal nodes of the
parent planted promolecules contained in a diploid, the
following functional relation is obtained by multiplying
by x2 and adding 1 for the initial (trivial) planted pro-
molecule:

c(x2) = 1 + x2

3

(

c(x2)3 + 2c(x6)
)

. (19)

Finally, let us examine Eq. 7, where the warehouse
(Eq. 6) again grows in agreement with the grafting pro-
cedure. By an intimate examination, Eq. 7 is recognized
to be a generating function of achiral proligands, each
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of which is now further regarded as a child planted pro-
molecule. This generating function exhibits the same
property as the one evaluated by Eq. 4 which aims at
counting parent planted promolecules. Thus, there
emerges a recursive process.

Note that such an achiral parent planted promole-
cule takes either type of 11, 12, 18, or 19 and that such
a child planted promolecule takes either type selected
from Fig. 7 according to chirality fittingness.

This recursive situation can be treated in terms of the
first proposition of Theorem 4 of [28] for the enumera-
tion of achiral ligands so that the CI-CFA shown in Eq. 4
and the generating functions shown in Eqs. 11 and 12 can
be used recursively. Because three children to which the
generating function (Eq. 11) is assigned are permuted
in accord with the CI-CFA (Eq. 4), Theorem 4 of of [28]
shows that the series for enumerating is expressed as
follows:

a(x)c(x2). (20)

where the subscript d in Eq. 7 is treated as the power of
x, i.e., xd. Because Eq. 20 ignores the principal node of
the parent planted promolecule tentatively, the follow-
ing functional relation is obtained by multiplying by x
and adding 1 for the initial (trivial) planted
promolecule:

a(x) = 1 + xa(x)c(x2). (21)

Although this type of equation was first noted by
Robinson et al. [15], their treatment did not take the
sphericity concept. As a result, the functions b(x) and
c(x) were not differentiated so that both of the functions,
i.e., b(x) in Eq. 17 and c(x) in Eq. 21, were replaced by a
single function s(x). In contrast, the present formulation
indicates that the function c(x) shown in Eq. 21 should
correspond to the function c(x) shown in Eq. 19 and not
to the function b(x) shown in Eq. 17. This point will be
discussed later in detail.

4.5 Planted 3D-trees and chiral planted 3D-trees

Because the generating function B(x) (Eq. 14) is eval-
uated by using Eq. 2, Theorem 2 of of [28] shows that
the series for enumerating is expressed as follows:

1
6

(

b(x)3 + 2b(x3) + 3a(x)c(x2)
)

(22)

where the subscript d in Eq. 7 is treated as the power of
x, i.e., xd. Because Eq. 22 ignores the principal node of
the parent planted promolecule tentatively, the follow-
ing functional relation is obtained by multiplying by x

and adding 1 for the initial (trivial) planted promolecule:

B(x) = 1 + x
6

(

b(x)3 + 2b(x3) + 3a(x)c(x2)
)

(23)

On the same line, the generating function C(x)

(Eq. 15) is expressed as follows:

C(x) = 1 + x
6

(

b(x)3 + 2b(x3) − 3a(x)c(x2)
)

(24)

by starting from Eq. 5.
By introducing Eq. 17 (for b(x)) and Eq. 21 (for a(x))

into Eqs. 23 and 24, we obtain more convenient equa-
tions as follows:

B(x) = 1
2

(a(x) + b(x)) (25)

C(x) = 1
2

(b(x) − a(x)) , (26)

which are represented by linear combinations of a(x)

and b(x). It follows that each coefficient in the gener-
ating functions for B(x) and C(x) satisfies either of the
following relationships.

Bn = 1
2
(αn + βn) (27)

Cn = 1
2
(βn − αn) (28)

These relationships can be obtained intuitively because
we can put Bn = αn + Cn and βn = αn + 2Cn.

4.6 Recursive calculation

By using Eq. 21 for a(x), 17 for b(x), and 19 for c(x), we
can evaluate the coefficients αn, βn, and γn recursively.
The results for n ≤ 20 are summarized in Table 2.

To illustrate the process of recursive calculation, sup-
pose that the coefficients of xn (n ≤ 8) have been already
calculated. Note that the coefficients of x2n for c(x) are
taken into consideration. Then, we presume the follow-
ing generating functions:

a(x) = 1 + x + x2 + 2x3 + 3x4 + 5x5 + 8x6 + 14x7

+23x8 + α9x9 + α10x10 + α11x11 (29)

b(x) = 1 + x + x2 + 2x3 + 5x4 + 11x5 + 28x6 + 74x7

+199x8 + β9x9 + β10x10 + β11x11 (30)

c(x2) = 1 + x2 + x4 + 2x6 + 5x8 + 11x10 + 28x12 + 74x14

+199x16 + γ18x18 + γ20x20 + γ22x22 (31)

where the terms for n ≥ 12 are omitted tentatively.
These intermediate generating functions are introduced
into the respective right-hand sides of Eqs. 21, 17, and
19. The resulting equations are expanded to give the
following generating functions recursively:
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Table 2 The numbers of planted 3D-trees or monosubstituted
alkanes

n αn βn γn Bn Cn Rn

0 1 1 1 1 0 1
1 1 1 – 1 0 1
2 1 1 1 1 0 1
3 2 2 – 2 0 2
4 3 5 1 4 1 4
5 5 11 – 8 3 8
6 8 28 2 18 10 17
7 14 74 – 44 30 39
8 23 199 5 111 88 89
9 41 551 – 296 255 211

10 69 1,553 11 811 742 507
11 122 4,436 – 2,279 2,157 1,238
12 208 12,832 28 6,520 6,312 3,057
13 370 37,496 – 18,933 18,563 7,639
14 636 110,500 74 55,568 54,932 19,241
15 1,134 328,092 – 164,613 163,479 48,865
16 1,963 980,491 199 491,227 489,264 124,906
17 3,505 2,946,889 – 1,475,197 1,471,692 321,198
18 6,099 8,901,891 551 4,453,995 4,447,896 830,219
19 10,908 27,012,286 – 13,511,597 13,500,689 2,156,010
20 19,059 82,300,275 1,553 41,159,667 41,140,608 5,622,109

The numbers of planted 3D-trees are obtained under several con-
ditions, i.e., αn: achiral planted 3D-trees; βn: achiral and chiral
planted 3D-trees, where two enantiomers of a pair are counted
separately; γn: diploids; Bn: achiral and chiral planted 3D-trees,
where a pair of enantiomers is counted just once; Cn: chiral planted
3D-trees, where a pair of enantiomers is counted just once; and
Rn: planted trees as graphs

a(x) = 1 + x + x2 + 2x3 + 3x4 + 5x5 + 8x6 + 14x7

+23x8 + 41x9

+(28 + α9)x10 + (53 + α10x11) + · · · (32)

b(x) = 1 + x + x2 + 2x3 + 5x4 + 11x5 + 28x6 + 74x7

+199x8 + 551x9 + (1, 002 + β9)x10

+(1, 781 + 2β9 + β10)x
11 + · · · (33)

c(x2) = 1 + x2 + x4 + 2x6 + 5x8 + 11x10 + 28x12 + 74x14

+ 199x16 + 551x18 + (1, 002 + γ18)x
20

+ (1, 781 + 2γ18 + γ20)x22 + · · · (34)

By comparing the original generating functions (Eqs. 29–
31) with the expanded ones (Eqs. 32–34), we find that
the coefficients of the terms x9, x10, and x11 satisfy the
following relations:

α9 = 41, α10 = 28 + α9, α11 = 53 + α10

β9 = 551, β10 = 1, 002 + β9, β11 = 1, 781 + 2β9 + β10

γ18 = 551, γ20 = 1, 002 + γ18, γ22 = 1, 781 + 2β18 + γ20

(35)

Thereby, the coefficients α9–α11, β9–β11, and γ18–γ22 are
calculated as found in Table 2.

The resulting values are used to derive further inter-
mediate generating functions a(x), b(x), and c(x), which
contain the calculated coefficients up to the term x11

and unknown coefficients for terms up to x14. Then, the
calculation process described above is repeated recur-
sively. The values obtained up to 20 carbon content are
listed in Table 2.

After the calculation of αn and βn, they are introduced
into Eqs. 27 and 28 to give Bn and Cn. These values are
also listed in Table 2.

4.7 Diagrammatical tracing

The recursive process of calculation can be traced dia-
grammatically as shown in Figs. 9, 10, 11 and 12, which
depict 41 achiral planted 3D-trees (stereoisomers of
mono-substituted alkanes) corresponding to the term
x9 appearing in a(x) (Eq. 32). Although the configura-
tion of each carbon node is not depicted except two
pseudoasymmetric cases, these planted 3D-trees shown
in Figs. 9, 10, 11 and 12 have 3D structures.

First, Fig. 9 shows 23 planted 3D-trees having CH2 as
a principal node and Z as a root (or primary monosub-
stituted alkanes in chemical meaning). The occurrence
of the 23 stereoisomers is explained by the factorization
x8 ·x0x0 ×x for the term x9. The term x8 of the factoriza-
tion x8 · x0x0 × x represents an achiral proligand having
8 non-terminal nodes (carbons) for a(x) in a(x)c(x2) (or
a1 in a1c2). The term x0x0 of the factorization x8 ·x0x0×x
represents two terminal nodes (hydrogens) for c(x2) in
a(x)c(x2) (or c2 in a1c2). The last term x corresponds to
an additional node as a new principal node. It follows
that the coefficient 23 of the term x8 in Eq. 32 and the
coefficient 1 of the term x0x0 (= 1) in Eq. 34 are multi-
plied to give 23. Thus, there emerge 23 primary planted
3D-trees or primary monosubstituted alkanes (37–59),
as depicted in Fig. 9. As found easily, the 23 planted 3D-
trees correspond to the achiral planted promolecule of
the type 12 (Fig. 7), in which H is replaced by an achiral
R (alkyl) and each X is replaced by H (hydrogen), i.e.,
H2RC– in chemical meaning. Chemically speaking, the
primary monosubstituted alkanes 37–59 are represented
by the formula R–CH2–Z, where R contains eight car-
bons.

The primary planted 3D-trees or primary monosub-
stituted alkanes (37–59) collected in Fig. 9 are divided
into subcategories by considering further factorization
of the term x8 appearing in the factorized term
x8 · x0x0 × x. It should be note that the itemization with
respect to term x8 corresponds to the itemization of
23 achiral planted 3D-trees or monosubstituted alkanes
with x8 (cf. the x8-row (n = 8) of Table 2).
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Fig. 9 Achiral planted 3D-trees or monosubstituted alkanes,
which are assigned to the term x9 (23 primary monosubstituted
primary alkanes among 41 stereoisomers)

Fig. 10 Achiral planted 3D-trees or monosubstituted alkanes,
which are assigned to the term x9 (8 tertiary monosubstituted
alkanes among 41 stereoisomers)

Fig. 11 Achiral planted 3D-trees or monosubstituted alkanes,
which are assigned to the term x9 (5 secondary monosubstitut-
ed alkanes among 41 stereoisomers)

1. According to the further factorization x7 · x0x0 × x
of the term x8, the coefficient 14 of the term x7 in
Eq. 32 and the coefficient 1 of the term x0x0 (=1) in
Eq. 34 are multiplied to give 14. Thus, there emerge
14 primary planted 3D-trees or primary monosub-
stituted alkanes of this type, i.e., 37–50. The factor-
ization x7 · x0x0 × x again corresponds to the achiral
planted promolecule of the type 12 (Fig. 7), in which
H is replaced by an achiral R (alkyl) and each X is
replaced by H (hydrogen), i.e., H2RC– in chemical
meaning. It follows that the primary monosubstitut-
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Fig. 12 Achiral planted 3D-trees or monosubstituted alkanes,
which are assigned to the term x9 (5 tertiary monosubstituted
alkanes among 41 stereoisomers)

ed alkanes 37–50 are represented by the formula R–
CH2CH2–Z, where R contains seven carbons.

2. According to another factorization x5 · x1x1 × x
of the term x8, the coefficient 5 of the term x5 in
Eq. 32 and the coefficient 1 of the term x1x1 (= x2)
in Eq. 34 are multiplied to give 5. Thus, there emerge
five primary planted 3D-trees or primary monosub-
stituted alkanes of this type, i.e., 51–55. The factor-
ization x5 ·x1x1 ×x corresponds to the achiral planted
promolecule of the type 12 (Fig. 7), in which H is re-
placed by an achiral R (alkyl) and each X is replaced
by Me (methyl), i.e., RMe2C– in chemical meaning.
It follows that the primary monosubstituted alkanes
51–55 are represented by the formula RMe2C–CH2–
Z, where R contains five carbons.

3. According to further factorization x · x3x3 × x of the
term x8, the coefficient 1 of the term x in Eq. 32 and
the coefficient 2 of the term x3x3 (= x6) in Eq. 34 are
multiplied to give 2. Thus, there emerge two primary
planted 3D-trees or primary monosubstituted alk-
anes of this type, i.e., 56 and 57. The factorization
x · x3x3 × x corresponds to the achiral planted pro-
molecule of the type 12 (Fig. 7), in which H is replaced
by Me (methyl) and each X is replaced by R (propyl),
i.e., MeR2C– in chemical meaning. It follows that the
primary monosubstituted alkanes 56 and 57 are rep-
resented by the formula MeR2C–CH2–Z, where R
contains three carbons.

4. According to the factorization x3 · x2x2 × x of the
term x8, the coefficient 2 of the term x3 in Eq. 32 and
the coefficient 1 of the term x2x2 (= x4) in Eq. 34 are
multiplied to give 2. Thus, there emerge two primary
planted 3D-trees or primary monosubstituted alk-
anes of this type, i.e., 58 and 59. The factorization
x3 · x2x2 × x corresponds to the achiral planted pro-
molecule of the type 12 (Fig. 7), in which H is replaced

by R (propyl) and each X is replaced by Et (ethyl),
i.e., REt2C– in chemical meaning. It follows that the
primary monosubstituted alkanes 58 and 59 are rep-
resented by the formula REt2C–CH2–Z, where R
contains three carbons.

On the other hand, Fig. 10 can be explained as fol-
lows. Thus, the term x9 coming from the factorization
x6 · x1x1 × x corresponds to eight planted 3D-trees hav-
ing a tertiary principal node and Z as a root (i.e., ter-
tiary monosubstituted alkanes in chemical meaning).
The term x6 of the factorization x6 · x1x1 × x represents
an achiral proligand with six non-terminal nodes (car-
bons), which meets a(x) in a(x)c(x2) (or a1 in a1c2). The
term x1x1 of the factorization x6 · x1x1 × x represents
two proligands each having one node, which meet c(x2)

in a(x)c(x2) (or c2 in a1c2). The last term x corresponds
to an additional node as a new principal node. It follows
that the coefficient 8 of the term x6 in Eq. 32 and the
coefficient 1 of the term x1x1 (= x2) in Eq. 34 are multi-
plied to give 8. Thus, there emerge eight tertiary planted
3D-trees or tertiary monosubstituted alkanes (60–67),
as depicted in Fig. 10.

The factorization x6 · x1x1 × x corresponds to the
achiral planted promolecule of the type 12 (Fig. 7), in
which H is replaced by an achiral R (alkyl) and each X
is replaced by Me (methyl), i.e., RMe2C– in chemical
meaning. It follows that the tertiary monosubstituted
alkanes 60–67 shown in Fig. 10 are represented by the
formula RMe2C–Z, where R contains six carbons.

There are five planted 3D-trees having a secondary
principal node and Z as a root (i.e., secondary mono-
substituted alkanes in chemical meaning), which are
shown in Fig. 11, where the term secondary is used chem-
ically. They can be explained by the factorized term
x0 · x4x4 × x for the term x9. The term x0 of the fac-
torization x0 · x4x4 × x represents no carbon node (but
a terminal hydrogen node) for a(x) in a(x)c(x2) (or a1 in
a1c2). The term x4x4 of the factorization represents two
proligands having four carbon nodes, which meet c(x2)

in a(x)c(x2) (or c2 in a1c2). The last term x corresponds
to an additional node as a new principal node. It follows
that the coefficient 1 of the term x0(= 1) in Eq. 32 and
the coefficient 5 of the term x4x4 (=x8) in Eq. 34 are
multiplied to give 5. Thus, there emerge five secondary
planted 3D-trees or secondary monosubstituted alkanes
(68–72), as depicted in Fig. 11.

The factorization x0 · x4x4 × x corresponds to the
achiral planted promolecule of the type 12, 18, or 19
(Fig. 7). For the correspondence to 12, H is replaced by
a hydrogen atom and each X is replaced by R (butyl),
i.e., R2HC– in chemical meaning. It follows that the sec-
ondary monosubstituted alkanes 68–70 shown in Fig. 11
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are represented by the formula R2CH–Z, where each R
contains four carbons.

For the correspondence to 18 (or 19), H is replaced by
a hydrogen atom, p (or p) is replaced by R[R] (chiral sec-
butyl of R-configuration), and p (or p) is replaced by R[S]
(chiral sec-butyl of S-configuration), i.e., R[R]R[S]HC– in
chemical meaning. It follows that the secondary mono-
substituted alkanes 71 and 72 shown in Fig. 11 are rep-
resented by the formula R[R]R[S]CH–Z, which indicates
the first appearance of pseudoasymmetry in the series
of planted 3D-trees or monosubstituted alkanes.

The tertiary planted 3D-trees (73–75) depicted in
Fig. 12 are characterized by the factorized term
x4 ·x2x2 ×x. The term x4 of the factorization x4 ·x2x2 ×x
represents 4 non-terminal nodes (carbons) for a(x) in
a(x)c(x2) (or a1 in a1c2). The term x2x2 represents two
plus two nodes for c(x2) in a(x)c(x2) (or c2 in a1c2).
The last term x corresponds to an additional node as
a new principal node. It follows that the coefficient 3
of the term x4 in Eq. 32 and the coefficient 1 of the
term x2x2 (= x4) in Eq. 34 are multiplied to give 3. Thus,
there emerge three tertiary planted 3D-trees or tertiary
monosubstituted alkanes (73–75).

The factorization x4 · x2x2 × x of the term x9 corre-
sponds to the achiral planted promolecule of the type 12
(Fig. 7), in which H is replaced by an achiral R (butyl)
and each X is replaced by Et (ethyl), i.e., REt2C– in
chemical meaning. It follows that the tertiary monosub-
stituted alkanes 73–75 shown in Fig. 12 are represented
by the formula REt2C–Z, where R contains four car-
bons.

The set of tertiary planted 3D-trees (76 and 77) de-
picted in Fig. 12 is characterized by the factorized term
x2 · x3x3 × x. The term x2 of the factorization
x2 · x3x3 × x represents two non-terminal nodes (car-
bons) for a(x) in a(x)c(x2) (or a1 in a1c2). The term x3x3

represents three plus three nodes for c(x2) in a(x)c(x2)

(or c2 in a1c2). The last term x corresponds to an addi-
tional node as a new principal node. It follows that the
coefficient 1 of the term x2 in Eq. 32 and the coefficient
2 of the term x3x3 (= x6) in Eq. 34 are multiplied to give
2. Thus, there emerge two tertiary planted 3D-trees or
tertiary monosubstituted alkanes (76 and 77).

The factorization x2 · x3x3 × x of the term x9 corre-
sponds to the achiral planted promolecule of the type 12
(Fig. 7), in which H is replaced by an achiral R (ethyl)
and each X is replaced by R (propyl), i.e., EtR2C– in
chemical meaning. It follows that the tertiary mono-
substituted alkanes 76 and 77 shown in Fig. 12 are rep-
resented by the formula EtR2C–Z, where R contains
three carbons.

In summary, the diagrammatical tracing reveals the
recursive nature of calculation. Thus, the number 41 is

obtained by summing up the numbers of the planted
3D-trees shown in Figs. 9, 10, 11 and 12 as follows:

23 + 8 + 5 + (3 + 2) = 41, (36)

where the respective numbers in the left-hand side ap-
pear as the coefficients of the recursive calculations
(Eqs. 32 and 34), i.e., 23x8 in a(x) (Eq. 32), 8x6 in a(x)

(Eq. 32), 5x8 in c(x) (Eq. 34), 3x4 in a(x) (Eq. 32), and 2x6

in c(x) (Eq. 34). The total number 41 appears recursively
as the coefficient of the term x9 in a(x) (Eq. 32).

Moreover, the number 23 of the planted 3D-trees
shown in Fig. 9 is obtained as follows:

14 + 5 + 2 + 2 = 23, (37)

where the respective numbers in the left-hand side
appear as the coefficients of the recursive calculations
(Eqs. 32 and 34), i.e., 14x7 in a(x) (Eq. 32), 5x5 in a(x)

(Eq. 32), 2x6 in c(x) (Eq. 34), an 2x3 in a(x) (Eq. 32). The
total number 23 appears recursively as the coefficient of
the term x8 in a(x) (Eq. 32).

5 Graphs versus chemical 3D-structures

5.1 Comparison with Pólya’s Theorem

Before we start our discussions on graphs versus chem-
ical 3D-structures, we shall refer to several pioneering
accomplishments on the enumeration of planted trees
or their equivalents. Henze and Blair [37] obtained the
number of alkyl radicals (or aliphatic alcohols) of a
given carbon content by an elaborate method other than
Polya’s method, where the alkyl radicals were regarded
as graphs, not as 3D-objects. Pólya [1,2] applied his main
theorem (Hauptsatz) to the evaluation of the number
of planted trees, which were mathematical counterparts
of alkyl radicals. Pólya’s results [1,2] were also limited
within graphs and were not concerned with 3D-objects
from the present viewpoint.

According to Pólya (Eq. 2.13 of Sect. 42 [1,2]), the
number (Rn) of planted trees or alkyl radicals as graphs
is represented by the following generating function:

s(x) =
∞
∑

n=0

Rnxn, (38)

where we put R0 = 1 and obtain the following functional
equation:

s(x) = 1 + x
6

(

s(x)3 + 2s(x3) + 3s(x)s(x2)
)

. (39)

Obviously, Eq. 39 is a special case of Eq. 23 in which we
place s(x) = a(x) = b(x) = c(x) in the right-hand side
and s(x) = B(x) in the left-hand side. The results based
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Fig. 13 Pseudoasymmetry versus enantiomeric relationship in
planted 3D-trees or monosubstituted alkanes, which are assigned
to the term x9

on Eq. 39 are shown in the last column of Table 2. They
are identical with those of Henze and Blair [37].

To discuss pseudoasymmetric cases appearing in the
case of n = 9, a manual enumeration is done by consid-
ering itemization with respect to the number of stereo-
genic configurations:

Planted 3D-trees with x9 Number
Achiral (except pseudoasymmetric cases) 39 (as graphs)
Chiral (with one stereogenic configuration) 102 (as graphs)
Chiral (with two stereogenic configurations) 62 (as graphs)
Chiral (with three stereogenic configurations) 7 (as graphs)
pseudoasymmetric case 1 (as graphs)

Total number 211 (as graphs)

By starting from these values, the row of n = 9 in
Table 2 is confirmed as follows:

α9 = 39 + 2 = 41 (40)

β9 = (39 + 2)

+(102 × 2 + 62 × 22 + 7 × 23 + 2) = 551 (41)

B9 = (39 + 2)

+(102 + 62 × 2 + 7 × 22 + 1) = 296 (42)

C9 = 102 + 62 × 2 + 7 × 22 + 1 = 255 (43)

R9 = 39 + 102 + 62 + 7 + 1 = 211, (44)

where the first and the second pair of parentheses in the
calculation of β9 or B9 are concerned with achiral and
chiral stereoisomers, respectively.

It is informative to examine Fig. 13, which depicts
the pseudoasymmetric cases (78 and 79) and a relevant
enantiomeric pair of chiral stereoisomers (80 and 80).
They contribute variously to the recursive calculations
shown in Table 2, where the effect of pseudoasymmetry
can be clearly demonstrated as follows.

All of the stereoisomers (78, 79, 80, 80) are equalized
in the recursive enumeration based on Eq. 39 so as to

be counted as one graph (cf. R9). They are categorized
into an achiral stereoisomer 78, an achiral stereoisomer
79, and an enantiomeric pair of chiral stereoisomers (80
and 80). Hence, the contribution of these stereoisomers
to each coefficient is summarized as follows:

α9: 2 (achiral) 78, 79
β4: 2 (achiral) + 2 (chiral) 78, 79 + 80, 80
B9: 2 (achiral) + 1 (enantiomeric pair) 78, 79 + 80/80
C9: 1 (enantiomeric pair) 80/80
R9: 1 (graph) 78/79/80/80

where each symbol with slashes (80/80 or 78/79/80/80)
indicates that the stereoisomers at issue are regarded as
a single isomer so as to be counted just once under a
criterion for calculating each coefficient. In place of this
manual itemization, a more general combinatorial item-
ization is desirable but open to further investigation.

5.2 Merits of Fujita’s proligand method

To show the merits of Fujita’s proligand method, it is
worthwhile to mention the previous results of Robinson
et al. [15], who investigated the enumeration of planted
trees or monosubstituted alkanes after modifying the
terms in Pólya’s CIs. They gave the number of planted
trees having up to 14 carbon content, which are identi-
cal with our results for αn and βn (n ≤ 14) collected in
Table 2. Their modification of Pólya’s CIs, however, did
not contain the concepts of sphericity, proligand, pro-
molecule, which are keys of the present approach based
on Fujita’s proligand method. This point is essential and
shall be discussed in detail.

The concept of sphericity [16] indicates that an
enantiospheric cycle (c2) causes a transitive permuta-
tion between p and p, where the action of c2 brings about
the exchange between p and p with chirality alternation.
The transitive permutation corresponds to the property
of an enantiospheric orbit called the compensated chiral
packing of a chiral ligand p and its enantiomer p.

Although Robinson et al. [15] seemed to take such
compensated chiral packing into implicit consideration,
they considered the action of b2 in place of the action
of c2. Thus, in place of Eq. 23 of the present approach,
they derived their Eq. 13 [15], which can be written as

B(x) = 1 + x
6

(

b(x)3 + 2b(x3) + 3a(x)b(x2)
)

, (45)

where their notation is changed to meet the present one.
By combining this with their counterpart of Eq. 25, they
derived their counterpart of the following equation:

a(x) = 1 + xa(x)b(x2). (46)
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They applied their counterpart of Eq. 46 to recursive
calculations in place of Eq. 21 of the present approach.

Note that the action of b2 (i.e., b(x2)) causes the
exchange between p and p (or between p and p) with-
out chirality alternation and that b2 does not exchange
p and p because of transitivity. If the action of b2 is con-
sidered to exchange p and p, two modes of packing (i.e.,
p/p and p/p) cannot be differentiated from each other so
as to become degenerate as a single mode of packing. It
follows that their treatment using Eq. 46 unconsciously
overlooked such subtle but essential situations as con-
cerned with b2 and c2, so that the mixing-up of b2 with
c2 took place, contrary to their own intention. In fact,
the two modes of packing (i.e., p / p and p / p) accord-
ing to the compensated chiral packing were replaced by
other two modes of packing, i.e., p/p and p / p, in their
treatment. Because the molecular formulas of p and p
are equal by considering their carbon contents only, the
usage of Eq. 46 fortunately resulted in the same results
as the present ones using Eq. 21.

From the viewpoint which is brought about by the
sphericity concept, we can say that Robinson et al. [15]
regarded the ligand inventory for cd (e.g., Eq. 8) as being
equal to the one for bd (e.g., Eq. 9). In other words, their
modified method is effective only on condition that the
ligand inventory cd can be equalized to bd. This condi-
tion is satisfied in the recursive enumeration described
in Sect. 4. However, their modified method is incapable
of solving enumeration of promolecules with consider-
ing p and p, because the action of cd is inevitable to be
considered, as found easily by the discussions described
in Sect. 3.3. It should be emphasized that Fujita’s proli-
gand method gives a common mathematical framework
to solve both kinds of enumeration problems.

To evaluate cd (c(x)) as a generating function, we have
introduced the concept of diploid in Sect. 4.2. The con-
cept provides us with a deep insight into the relationship
between the SI cd for enantiospheric cycles and the SI
bd for hemispheric cycles.

A ligand inventory for an SI cd (e.g., Eq. 8) can be
regarded as a generating function for counting such dip-
loids of promolecules (or proligands) separately (e.g.,
{A, A}, {Q, Q}, {Q, Q}, and others). On the other hand, a
ligand inventory for an SI bd (e.g., Eq. 9) is regarded as a
generating function for counting achiral, chiral promol-
ecules (or proligands) and their enantiomers separately
(e.g., an achiral promolecule A, a chiral promolecule
Q, its enantiomer Q, and others). As found easily by the
definition, there appears one-to-one correspondence for
each of the following pairs: A ↔ {A, A}, Q ↔ {Q, Q},
Q ↔ {Q, Q} under the maximum chiral subgroup (e.g.,
the subgroup C3 of C3v). This correspondence allows us
to evaluate c(x2) (due to c2) by using Eq. 19.

6 Conclusions

Planted three-dimensional (3D) trees, which are defined
as a 3D extension of planted trees, are enumerated by
Fujita’s proligand method formulated in Part 1–3 of
this series [26–28]. A planted 3D-tree is regarded as
a planted promolecule, which is defined as a 3D object,
where the substitution positions of a given 3D skele-
ton are occupied by a root and proligands. Each of the
proligands is further regarded as another planted pro-
molecule in a nested fashion. Thus, the nested character
of intermediate planted promolecules is used to derive
generating functions for enumerate planted 3D-trees.
The generating functions are based on CI-CFs, which
are composed of three kinds of sphericity indices (SIs),
i.e., ad for homospheric cycles, cd for enantiospheric
cycles, and bd for hemispheric cycles. For the purpose of
evaluating cd, the concept of diploid is proposed, where
the nested nature of cd is demonstrated clearly. The SIs
are applied to derive functional equations for recursive
calculations, i.e., a(x), c(x2), and b(x). Thereby, recursive
calculations of planted 3D-trees or equivalently those
of monosubstituted alkanes as stereoisomers are con-
ducted and collected up to 20 carbon content in a tabular
form.
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